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E-mail: schubert@ifm.umich.mx

Abstract: We obtain closed-form expressions, in terms of the Faulhaber numbers, for the

weak-field expansion coefficients of the two-loop Euler-Heisenberg effective Lagrangians in

a magnetic or electric field. This follows from the observation that the magnetic worldline

Green’s function has a natural expansion in terms of the Faulhaber numbers.

Keywords: Electromagnetic Processes and Properties, Nonperturbative Effects.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep112006013/jhep112006013.pdf

mailto: dunne@phys.uconn.edu
mailto:huet@phys.uconn.edu
mailto:nowherefastx@gmail.com
mailto:schubert@ifm.umich.mx
http://jhep.sissa.it/stdsearch


J
H
E
P
1
1
(
2
0
0
6
)
0
1
3

Contents

1. Introduction: the Euler-Heisenberg Lagrangian at one and two loops 1

2. Two loop expansion coefficients for spinor QED 3

3. Expansion coefficients for scalar QED 6

4. Conclusions 7

1. Introduction: the Euler-Heisenberg Lagrangian at one and two loops

The Euler-Heisenberg Lagrangian [1, 2] describes the effect of a virtual electron - positron

pair on an external Maxwell field in the one loop and constant field approximation. Its

standard proper time representation is

L
(1)
spin(F ) = −

1

8π2

∫ ∞

0

dT

T 3
e−m2T

[

(eaT )(ebT )

tanh(eaT ) tan(ebT )

−
1

3
(a2 − b2)T 2 − 1

]

. (1.1)

Here T is the proper-time of the loop fermion, m its mass, and a, b are the two Maxwell

invariants, related to E, B by a2 − b2 = B2 − E2, ab = E · B. The superscript ”(1)”

stands for one loop. A similar representation exists for scalar QED [2, 3]:

L
(1)
scal(F ) =

1

16π2

∫ ∞

0

dT

T 3
e−m2T

[

(eaT )(ebT )

sinh(eaT ) sin(ebT )

+
1

6
(a2 − b2)T 2 − 1

]

. (1.2)

The Lagrangians (1.1), (1.2) historically provided the first examples for the concept of an

effective Lagrangian, and moreover the first nonperturbative result in quantum field theory.

See [4] for a review of their many applications and generalizations.

The proper time integrals in these formulas can be done exactly in terms of certain

special functions [4]. Alternatively, one can expand the integrands as power series in the

field invariants, using the Taylor expansions

z

tanh(z)
=

∞
∑

n=0

B2n

(2n)!
(2z)2n, (1.3)

z

sinh(z)
= −

∞
∑

n=0

(

1 − 21−2n
)

B2n

(2n)!
(2z)2n. (1.4)
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Here the B2n are the Bernoulli numbers. The terms in this expansion involving N = 2n

powers of the field contain the information on the low energy limits of the N photon

scattering amplitudes. Thus in the low energy limit one can obtain these amplitudes in

closed form [5].

For a purely magnetic field eqs. (1.1), (1.2), (1.3), (1.4) yield

L
(1)
spin(B) = −8

(α

π

)

B2
∞
∑

n=0

22nB2n+4

(2n + 4)(2n + 3)(2n + 2)

(

eB

m2

)2n+2

, (1.5)

L
(1)
scal(B) = 4

(α

π

)

B2
∞

∑

n=0

22n(2−2n−3 − 1)B2n+4

(2n + 4)(2n + 3)(2n + 2)

(

eB

m2

)2n+2

. (1.6)

An analysis of the coefficients shows that these series are divergent but Borel summable [6 –

8]. Moreover, the summability relates to the fact that the effective Lagrangian is real in

the magnetic case. The corresponding series for the purely electric case is obtained by the

replacement B2 → −E2, which turns the alternating series into a non-alternating one. The

non-alternating series is not Borel summable, which is an indication of the well-known fact

that the electric effective Lagrangian has an imaginary part. Although this imaginary part

is nonperturbative in nature, it is possible to calculate it from the expansion coefficients

by an analysis of their large n behaviour, combined with a Borel dispersion relation [6 – 8].

This paper addresses the possibility of analyzing such weak-field expansions at higher

loop orders in QED. The two loop corrections to the Lagrangians (1.1), (1.2) have first

been considered by Ritus, who obtained them in terms of integral representations both in

spinor [9, 10] and scalar QED [11]. Other representations for the same Lagrangians were

later given in [12 – 15], however they all involve the same apparently intractable type of

double integrals. As a consequence, at the two loop level presently only the first few co-

efficients of the power series expansions for L
(2)
spin/scal(B) are known [8], and the imaginary

parts ImL
(2)
spin/scal(E) are known explicitly only in the leading weak field limit [16, 8] (al-

though Lebedev and Ritus succeeded in establishing the general structure of the imaginary

part [16]).

This should be contrasted with the case of a self-dual (euclidean) field, corresponding

to external photon lines of definite helicity, where the two-loop effective Lagrangians can

be obtained in closed form [17 – 19]. This result allows one to extend the aforementioned

calculation of the low energy limit of the N photon amplitudes to the two loop level for

one particular component of the photon S matrix, the so-called MHV amplitudes [18].

For general fields, it seems difficult to make further progress at the two loop level

without having a closed form expression for the weak field expansion coefficients. It is the

purpose of the present paper to derive such expressions for the purely magnetic (or purely

electric) cases. Thus, our goal is to obtain the coefficients of the weak field expansion of
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the (renormalized) magnetic two-loop effective Euler-Heisenberg Lagrangians L
(2)
spin/scal(B),

L
(2)
spin(B) =

( α

4π

)2
B2

∞
∑

n=0

a
(2)
spin(n)

(eB

m2

)2n+2
, (1.7)

L
(2)
scal(B) = −

1

2

( α

4π

)2
B2

∞
∑

n=0

a
(2)
scal(n)

(eB

m2

)2n+2
. (1.8)

Note the difference in normalization between the scalar and spinor QED cases, which takes

into account the global factor of −2 from statistics and degrees of freedom.

2. Two loop expansion coefficients for spinor QED

We start with the following integral representation of the on-shell renormalized Lagrangian,

which was obtained in [14]:

L
(2)
spin(B) = L

(2)
spin,main(B) + L

(2)
spin,δm(B). (2.1)

Here the “main part” is given by the following two parameter integral,

L
(2)
spin,main(B) =

( α

4π

)2
B2

∫ ∞

0

dz

z3
e−

m2

eB
z

∫ 1

0
du

[

L(z, u) − L02(z, u) −
g(z)

G

]

(2.2)

where z = eBT and

L(z, u) =
z

tanh(z)

{

B1
ln(G/Gz)

(G − Gz)2
+

B2

Gz(G − Gz)
+

B3

G(G − Gz)

}

,

B1 = 4z
(

coth(z) − tanh(z)
)

Gz − 4G ,

B2 = 2ĠĠz + z(8 tanh(z) − 4 coth(z))Gz − 2 ,

B3 = 4G − 2ĠĠz − 4z tanh(z)Gz + 2 ,

L02(z, u) = −
12

G
+ 2z2 ,

g(z) = −6

[

z2

sinh(z)2
+ z coth(z) − 2

]

. (2.3)

The integrand involves the so-called worldline Green’s function G(u) and the “magnetic”

Green’s function Gz(z, u), as well as their u-derivatives (denoted as Ġ and Ġz , respectively):

G = u(1 − u) ,

Ġ = 1 − 2u ,

Gz =
1

2

cosh(z) − cosh(zĠ)

z sinh(z)
,

Ġz =
sinh(zĠ)

sinh(z)
. (2.4)
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The function L(z, u) is essentially the two-loop integrand before renormalization. The

term L02(z, u) removes the order z0, z2 terms, which implements the renormalization of

the charge and the field, and the removal of the vacuum energy. (In the following we

will not always make this subtraction explicit.) The other subtraction term involving g(z)
G

relates to mass renormalization, which is necessary starting at the two loop level. In the

worldline formalism the need for this mass renormalization subtraction can be recognized

from the appearance of singularities at u = 0 and u = 1 [13, 14]. Those singular terms can

be absorbed into a mass shift of the one-loop lagrangian, δm0
∂

∂m0
L

(1)
spin(B), however this

leaves a finite remainder L
(2)
spin,δm(B),

L
(2)
spin,δm(B) = −

α

(4π)3
eBm2

∫ ∞

0

dz

z2
e−

m2

eB
z

[

z

tanh(z)
−

z2

3
− 1

]

×

[

18 − 12γ − 12 ln

(

m2z

eB

)

+ 12
eB

m2z

]

. (2.5)

The weak field expansion coefficients of L
(2)
spin,δm(B) are again easy to obtain using the

Taylor expansion (1.3). One finds

L
(2)
spin,δm(B) =

( α

4π

)2
B2

∞
∑

n=0

a
(2)
spin,δm(n)

(eB

m2

)2n+2
,

a
(2)
spin,δm(n) = −12

22n+4B2n+4

(2n + 4)(2n + 3)

(3

2
− γ − ψ(2n + 2)

)

. (2.6)

However, the main integral term (2.2) is much more difficult to expand. A brute-force

expansion was done in [8], but no closed-form expression was obtained. The technical

challenge is to expand the integrand (excluding the e−
m2

eB
z factor) in a series in z, in such

a way that the u integrals can also be done easily. This is complicated by the fact that the

magnetic Green’s function Gz(z, u) couples these two parametric variables in a nontrivial

manner. The main observation of this paper is that there exists an expansion of Gz(z, u)

which decouples the variables in an elegant manner. Remarkably, Gz(z, u) is essentially

the generating function of the so-called Faulhaber numbers of number theory [20]. Namely,

Gz(z, u) =
1

2

cosh(z) − cosh(zĠ)

z sinh(z)

= G(u) −

∞
∑

m=1

(2z)2m
m

∑

k=1

f̃(m,k) [G(u)]k+1 . (2.7)

Here we have defined

f̃(m,k) ≡
(−1)k+1

(2m + 1)!
f(m,k) (2.8)

with f(m,k) the Faulhaber numbers. These numbers can in turn be written as linear

combinations of the Bernoulli numbers [20]:

f(m,k) = (−1)k+1

b(k−1)/2c
∑

j=0

1

k − j

(

2k − 2j

k + 1

)(

2m + 1

2j + 1

)

B2m−2j (2.9)
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(m,k ≥ 1).

Given such an expansion, the u integrals are now trivial as they involve powers of the

free Green’s function G(u) = u(1− u). Using the standard Euler beta function integral we

define

∫ 1

0
du

[

u(1 − u)
]n

=
n!2

(2n + 1)!
≡ β(n + 1). (2.10)

To illustrate the Faulhaber expansion (2.7), consider the first few terms:

Gz = G +
(

1 − z coth(z)
)

G2 + O(G3) = G −
1

3
G2z2 + O(z4, G2) . (2.11)

This suggests rearranging L(z, u) as a series in ∆G/G where ∆G = Gz −G is the difference

between the magnetic and free worldline Green’s functions. After simple manipulations,

this leads to

L(z, u) =
4z2

G
+

∞
∑

i=0

(

−
∆G

G

)i
{

−
z2

sinh(z)2
4

G

1

(i + 1)(i + 2)

−
z

tanh(z)

1

G

(

8 +
4

i + 2

)

+
z

tanh(z)

2 Ġ(Ġz − Ġ)

G2

}

.

(2.12)

The u derivatives appearing in the last term can be removed by an integration by parts,

yielding

L(z, u) =
4z2

G
+ 4

z

tanh(z)

( z

tanh(z)
− 1

)

+
∞

∑

i=0

(

−
∆G

G

)i
{

−
z2

sinh(z)2
4

G

1

(i + 1)(i + 2)
−

z

tanh(z)

1

G

(

8 +
4

i + 2

)}

−
2z

tanh(z)

∞
∑

i=1

(

−
∆G

G

)i 1

i

{

2 − 4(i + 1)

G
+

i + 1

G2

}

. (2.13)

Performing the subtraction, implied in (2.2), of all terms O( 1
G), we finally obtain

L
(2)
spin,main(B) =

( α

4π

)2
B2

∫ ∞

0

dz

z3
e−

m2

eB
z

∫ 1

0
du l(z,G,Gz), (2.14)

where

l(z,G,Gz) =

∞
∑

i=1

(

−∆G

G

)i
{

−
z2

sinh(z)2
4

G

1

(i + 1)(i + 2)
+

z

tanh(z)

8

G

1

i(i + 2)

}

−
2z

tanh(z)

∞
∑

i=2

(

−
∆G

G

)i
(

1 +
1

i

)

1

G2
+

4

G

z

tanh(z)

(∆G

G2
+

z

tanh(z)
− 1

)

+4
z

tanh(z)

( z

tanh(z)
− 1

)

. (2.15)
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Here (2.7) was used to obtain the 1
G subtraction for the last term. We now expand the

trigonometric functions using (1.3) and

z2

sinh2(z)
=

∞
∑

n=0

B2n

(2n)!
(1 − 2n)(2z)2n . (2.16)

This leads directly to the following closed-form expression for the expansion coefficients:

a
(2)
spin,main(n) = 22n+4(2n + 1)!

{

n+2
∑

i=1

n+2
∑

M=i

M
∑

m1,...,mi=1
P

mi=M

m1
∑

k1=1

f̃(m1, k1) · · ·

mi
∑

ki=1

f̃(mi, ki)

×β
(

i
∑

j=1

kj

)

[

4

(i + 1)(i + 2)

(

2(n − M) + 3
)

+
8

i(i + 2)

]

tn+2−M

−

n+2
∑

i=2

n+2
∑

M=i

M
∑

m1,...,mi=1
P

mi=M

m1
∑

k1=1

f̃(m1, k1)· · ·

mi
∑

ki=1

f̃(mi, ki)β

( i
∑

j=1

kj−1

)

2(i+1)

i
tn+2−M

− 4

n+2
∑

m=2

m
∑

k=2

f̃(m,k)β(k − 1)tn+2−m − 8(n + 2)tn+2

}

(2.17)

where we have defined the short-hand:

tn ≡
B2n

(2n)!
. (2.18)

The full two-loop expansion coefficients in (1.7) are now given in closed-form by combin-

ing (2.6) and (2.17):

a
(2)
spin(n) = a

(2)
spin,main(n) + a

(2)
spin,δm(n) . (2.19)

3. Expansion coefficients for scalar QED

The case of scalar QED can be treated completely analogously, starting from any of the

various representations for L
(2)
scal(B) given in [13 – 15]. We will give here only the final result

– 6 –
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for the weak field expansion coefficients (as defined by (1.8)):

a
(2)
scal(n) = −22n+4(2n + 1)!

{ n+2
∑

M=2

M
∑

k=2

f̃(M,k)β(k − 1) sn+2−M

+

n+2
∑

i=2

n+2
∑

M=i

M
∑

m1,...,mi=1
P

mi=M

m1
∑

k1=1

f̃(m1, k1) · · ·

mi
∑

ki=1

f̃(mi, ki)β
(

i
∑

j=1

kj − 1
)

sn+2−M

+

n+2
∑

i=1

n+2
∑

M=i

M
∑

m1,...,mi=1
P

mi=M

m1
∑

k1=1

f̃(m1, k1) · · ·

mi
∑

ki=1

f̃(mi, ki)β
(

i
∑

j=1

kj

)

×
4

i + 2

[ 1

i + 1
− (2n − 2M + 3)

]

sn+2−M

+

n+1
∑

i=1

n+1
∑

M=i

M
∑

m1,...,mi=1
P

mi=M

m1
∑

k1=1

f̃(m1, k1) · · ·

mi
∑

ki=1

f̃(mi, ki)

×
2

(i + 1)(i + 2)
β
(

i
∑

j=1

kj + 1
)

sn−M+1

−sn+1 + 2sn+2

[

2 + (2n + 2)
(

4 − 3ψ(2n + 3) − 3γ
)]

}

. (3.1)

Here we have defined the short-hand notation:

sn ≡ −

(

1 − 21−2n
)

B2n

(2n)!
. (3.2)

4. Conclusions

We have found closed-form expressions for the weak field expansion coefficients of the two

loop corrections to the renormalized Euler-Heisenberg Lagrangians in a purely magnetic

(or purely electric) field. As a check, we have verified that eqs. (2.19) and (3.1) indeed

reproduce the known low order coefficients in these expansions [14, 8]:

L
(2)
spin[B] =

( α

4π

)2 B2

81

[

64
( eB

m2

)2

−
1219

25

(eB

m2

)4

+
135308

1225

(eB

m2

)6

− . . .

]

,

L
(2)
scal[B] =

( α

4π

)2 B2

81

[

275

8

(eB

m2

)2

−
5159

200

(eB

m2

)4

+
2255019

39200

(eB

m2

)6

− . . .

]

.

(4.1)

Although the closed-form formulae (2.19) and (3.1) are significantly more complicated than

the corresponding ones for the case of a self-dual field [18, 19], their structure is still similar

insofar as they can, using (2.9), be written in terms of folded sums of Bernoulli numbers

with factorial coefficients. Of course, it is quite possible that these formulas can still be

simplified.

– 7 –
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We note that the two-loop expansion coefficients are still rational numbers, after ex-

tracting a factor of (α/π)2, just as the one-loop coefficients are rational after extracting a

factor of (α/π). A question of obvious interest is whether this property persists to higher

loop orders. Based on a comparison with what is known about the coefficients of the QED

β - functions [21 – 26] we consider it likely that rationality will be found to hold at least for

the quenched (order Nf ) contributions to the Euler-Heisenberg Lagrangians at arbitrary

loop order.

Finally, since in the worldline formalism the magnetic Green’s function Gz is the basic

ingredient appearing in the integral representations for all processes involving constant

magnetic fields [13, 15], we expect the Faulhaber expansion (2.7) to become useful for

other calculations of this type, including possibly higher loop orders.
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